13 Januar 2010, 12:00 CET

Erste direkte Aufnahme eines Exoplaneten-Spektrums

Bei Beobachtungen an einem Dreifach-Planetensystem, das einer vergrößerten Version unseres eigenen Sonnensystems ähnelt, haben Astronomen erstmals direkt ein Spektrum – einen “chemischen Fingerabdruck [1]” – eines Planeten aufgenommen, der einen fremden Stern umkreist [2]. Das Ergebnis liefert neue Informationen über die Zusammensetzung und Entstehung des Planeten, und stellt einen Meilenstein der Suche nach Leben auf anderen Planeten dar.

Das Spektrum eines Planeten ist wie ein Fingerabdruck: Es liefert wichtige Informationen über die chemischen Elemente in der Planetenatmosphäre” erzählt Markus Janson, Erstautor des Fachartikels, in dem die neuen Ergebnisse vorgestellt werden. “Solche Informationen erlauben Rückschlüsse darauf, wie sich der Planet gebildet hat. In Zukunft könnte sich so auch Spuren von Leben auf fremden Planeten finden lassen.

Die Forscher nahmen das Spektrum eines riesigen Exoplaneten auf, der den hellen, sehr jungen Stern HR 8799 umkreist. HR 8799 steht am Nachthimmel im Sternbild Pegasus, und ist rund 130 Lichtjahre von uns entfernt. Der Stern besitzt anderthalb Mal soviel Masse wie unsere Sonne, und ist Zentralstern eines Planetensystems, das einer vergrößerten Version unseres eigenen Sonnensystems ähnelt: Im Jahre 2008 wurden dort drei Riesenplaneten nachgewiesen, mit Massen zwischen dem sieben- und dem zehnfachen der Jupitermasse. Die Planeten sind 20 bis 30 Mal soweit von ihrem Zentralstern entfernt wie die Erde von der Sonne; außerdem weist das System zwei Gürtel kleinerer Objekte auf, ähnlich dem Asteroiden- und dem Kuipergürtel unseres Sonnensystems.

Unser Beobachtungsziel war der mittlere der drei Planeten, der rund zehn Mal soviel Masse besitzt wie Jupiter besitzt und eine Oberflächentemperatur von rund 800 Grad Celsius aufweist”, so Carolina Bergfors, die an den Beobachtungen beteiligt war. “Nach mehr als fünf Stunden Belichtungszeit ist es uns gelungen, das Planetenspektrum aus dem viel helleren Licht des Zentralsterns herauszulösen.

Damit ist es zum ersten Mal gelungen, das Spektrum eines Exoplaneten, der einen normalen, fast sonnenähnlichen Stern umkreist, direkt aufzunehmen. Bis dahin war die Bestimmung von Spektren nur indirekt möglich gewesen: Bei Beobachtungen von “exoplanetaren Eklipsen”, also Situationen, in denen ein Exoplanet von der Erde aus gesehen hinter seinen Heimatstern tritt, liessen sich Spektren indirekt durch Vergleich des aufgefangenen Lichts vor und nach Verschwinden des Planeten erschließen. Solche indirekten Bestimmungen sind nur mit Weltraumteleskopen möglich, und können nur dann gelingen, wenn die Umlaufbahn des Planeten relativ zur Blickrichtung der irdischen Beobachter exakt richtig ausgerichtet ist – und das ist nur für sehr wenige Exoplanetensysteme der Fall. In diesem Fall dagegen wurde vom Erdboden aus mit Hilfe des Very Large Telescope (VLT) der ESO beobachtet, und das Spektrum wurde direkt bestimmt und ist damit von der Orientierung der Umlaufbahn des Planeten unabhängig.

Da der Zentralstern einige tausend Mal heller ist als der Planet, stellt diese direkte Bestimmung eine beachtliche Leistung dar. “Es ist, als wolle man aus zwei Kilometern Entfernung eine Kerze beobachten, die direkt neben einer hellen 300-Watt-Lampe steht” erklärt Janson.

Die Entdeckung wurde durch das Infrarotinstrument NACO möglich, das am VLT angebracht ist. Insbesondere nutzten die Forscher die Komponente CONICA, eine Kombination aus Kamera und Spektroskop, die vom Max-Planck-Institut für Astronomie (Heidelberg) und dem Max-Planck-Institut für Extraterrestrische Physik (Garching) entwickelt wurde. Eine entscheidende Rolle spielte dabei die hocheffektive adaptive Optik von NACO [3]. Noch detailreichere Bilder und Spektren von Exoplaneten erwarten die Forscher von SPHERE, einem Instrument der nächsten Generation, das 2011 am VLT installiert werden soll, und vom European Extremely Large Telescope (E-ELT), einem in Entwicklung befindlichen Riesenteleskop der Extraklasse.

Die neuen Ergebnisse geben Anlass, die derzeitigen Modelle der Atmosphäre des Exoplaneten zu überdenken. Wolfgang Brandner, Koautor des Fachartikels, erklärt: “Die Eigenschaften des Spektrums sind nicht mit den heutigen theoretischen Modellen vereinbar. Offenbar müssen wir die Eigenschaften der Staubwolken in der Planetenatmosphäre noch genauer modellieren – oder die chemische Zusammensetzung der Atmosphäre ist ganz anders, als bislang angenommen.

Die Astronomen hoffen, schon bald die chemischen Fingerabdrücke der beiden anderen Riesenplaneten zu bestimmen, und dann zum ersten Mal Zugang zu den Spektren dreier Exoplaneten aus ein und demselben Planetensystem zu haben. “Das wird mit Sicherheit neues Licht darauf werfen, wie Planetensysteme entstehen”, schließt Janson.

Anmerkungen:

[1] Ein Regenbogen führt uns vor Augen, dass sich weißes Licht in verschiedene Grundfarben zerlegen lässt. Astronomen führen diese Zerlegung des Lichts in verschiedene Farben (oder “Wellenlängenanteile”) mit ihren Instrumenten künstlich herbei – allerdings unterscheiden sie dort, wo wir lediglich fünf oder sechs Regenbogenfarben wahrnehmen, hunderter feiner Farbnuancen, die zusammen das Spektrum eines Objekts bilden: eine Übersicht, welche Mengen an Licht der Himmelskörper in jedem der enggefassten Farbbereiche abstrahlt. Die Eigenschaften der Spektren – besonders viel Licht in einigen, besonders wenig in anderen Farbbereichen – geben Aufschluss über die chemische Zusammensetzung der beobachteten Materie. Das macht die Spektroskopie, das Aufzeichnen von Spektren, zu einem Schlüsselwerkzeug der Astronomie.

[2] Im Jahre 2004 wurde mit Hilfe von NACO am VLT das Spektrum eines Objekts mit 5 Jupitermassen aufgenommen, das einen Braunen Zwerg umkreist (ein Brauner Zwerg ist ein Himmelskörper, der nicht genügend Masse besitzt, um ein Stern zu werden, aber zuviel Masse, um als Planet zu zählen). Allerdings gehen die Forscher davon aus, dass dieses Objektpaar, ähnlich wie ein Doppelstern, zusammen entstanden ist, dass sich der Begleiter also nicht wie ein Planet aus einer das Zentralobjekt umgebenden Materiescheibe gebildet hat (siehe die englischsprachigen Pressemitteilungen ESO 28/04ESO 15/05 und ESO 19/06).

[3] Beobachtungen, die mit bodengebundenen Teleskopen vorgenommen werden, werden durch turbulente Luftströmungen in der Atmosphäre empfindlich gestört. Diese Turbulenzen sind für das romantische Funkeln der Sterne verantwortlich – den Astronomen verderben sie in ganz unromantischer Weise die Arbeit, denn sie verwischen die feinen Details astronomischer Abbildungen. Mit Hilfe der Adaptiven Optik (AO) lassen sich diese Störungen weitgehend ausgleichen, so dass auch erdgebundene Teleskope so detailscharfe Bilder produzieren können wie sonst nur Weltraumteleskope, also Teleskope, die sich außerhalb der Erdatmosphäre befinden. Kernstück eines AO-Systems ist ein verformbarer Spiegel, mit dessen Hilfe die durch die atmosphärischen Turbulenzen verursachten Bildverzerrungen ausgeglichen werden. Gesteuert werden die Verformungen des Spiegels durch ein Computersystem, das laufend Daten eines so genannten Wellenfrontsensors auswertet. Dieser Sensor überwacht das Bild eines Referenzsterns: er misst, wie die atmosphärischen Störungen das Bild des Referenzsterns verzerren, und einige hundert Male pro Sekunde wird aus diesen Messdaten berechnet, wie der Spiegel verformt werden muss, um die beobachteten Verzerrungen auszugleichen.

Hintergrundinformationen

Der zugehörige Fachartikel M. Janson et al., “Spatially resolved spectroscopy of the exoplanet HR 8799 c”, erscheint diese Woche im Astrophysical Journal.

Das Forscherteam besteht aus M. Janson (Universität Toronto, Kanada), C. Bergfors, M. Goto, W. Brandner (Max-Planck-Institut für Astronomie, Heidelberg) und D. Lafrenière (Universität Montreal, Kanada). Vorbereitende Messungen wurden mit dem IRCS-Instrument am Subaru-Teleskop vorgenommen.

Die Europäische Südsternwarte ESO (European Southern Observatory) ist die führende europäische Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Getragen wird die Organisation durch ihre 14 Mitgliedsländer: Belgien, Dänemark, Deutschland, Finnland, Frankreich, Italien, die Niederlande, Österreich, Portugal, Spanien, Schweden, die Schweiz, die Tschechische Republik und das Vereinigte Königreich. Die ESO ermöglicht astronomische Spitzenforschung, indem sie leistungsfähige bodengebundene Teleskope entwirft, konstruiert und betreibt. Auch bei der Förderung internationaler Zusammenarbeit auf dem Gebiet der Astronomie spielt die Organisation eine maßgebliche Rolle. Die ESO betreibt drei weltweit einzigartige Beobachtungsstandorte in Nordchile: La Silla, Paranal und Chajnantor. Auf Paranal betreibt die ESO mit dem Very Large Telescope (VLT) das weltweit leistungsfähigste Observatorium für Beobachtungen im Bereich des sichtbaren Lichts, und VISTA, das größte Durchmusterungsteleskop der Welt. Die ESO ist der europäische Partner für den Aufbau des Antennenfelds ALMA, das größte astronomische Projekt überhaupt. Derzeit entwickelt die ESO das European Extremely Large Telescope (E-ELT) für Beobachtungen im Bereich des sichtbaren und Infrarotlichts, mit 42 Metern Spiegeldurchmesser ein Großteleskop der Extraklasse.

Die Übersetzungen von englischsprachigen ESO-Pressemitteilungen sind ein Service des ESO Science Outreach Network (ESON), eines internationalen Netzwerks für astronomische Öffentlichkeitsarbeit, in dem Wissenschaftler und Wissenschaftskommunikatoren aus allen ESO-Mitgliedsstaaten (und einigen weiteren Ländern) vertreten sind. Deutscher Knoten des Netzwerks ist das Haus der Astronomie am Max-Planck-Institut für Astronomie in Heidelberg.

Links

Vorträge zum Thema im PhysikClub:

Jeden Donnerstag im Januar, 19.00 Uhr Planetarium (Orangerie): Von Galilei zu den Superteleskopen der modernen Astronomie

Do, 28.1.: 10.00 Uhr Das AUGE, 3 d – Film zum VLT im Capitol – Kino

Vorträge in der Albert-Schweitzer-Schule, Neubau, Eingang Parkstr.:

Do, 4.2., 19.00 Uhr:  Vortrag über adaptive Optik

Do, 18.2., 19.00 Uhr: Vortrag über das zukünftige 42 m Teleskop

ESO 42/09 - Pressemitteilung Wissenschaft

 

Exoplaneten lösen Rätsel der Sonnenchemie

Eine bahnbrechende Studie an hunderten von Sternen weist auf eine Vebindung zwischen dem “Lithiumrätsel” der Sonnenchemie – dem Umstand, dass unser Heimatstern unerwartet geringe Mengen des chemischen Elements Lithium enthält – und dem Vorhandensein von Planetensystemen um Sterne hin. Die Astronomen untersuchten ihre 500 Zielsterne, von denen 70 ein Planetensystem besitzen, mit dem HARPS-Spektrografen der ESO und fanden heraus, dass sonnenähnliche Sterne, die ein Planetensystem besitzen, das in ihnen enthaltene Lithium deutlich schneller in andere Elemente umwandeln als planetenlose Sterne. Die Studie wirft damit nicht nur neues Licht auf ein altes Rätsel der Sonnenchemie, sondern zeigt auch einen hocheffizienten Weg auf, um Sterne mit Planetensystemen ausfindig zu machen.

Fast  zehn Jahre lang haben wir uns bemüht, herauszufinden, wie sich Sterne, die ein Planetensystem besitzen, von ihren unfructhbaren Cousins unterscheiden”, sagt Garik Israelian, Erstautor der Studie, die in dieser Woche in der Zeitschrift Nature erscheint. “Jetzt haben wir herausgefunden, dass der Lithiumgehalt sonnenähnlicher Sterne davon abhängt, ob die Sterne von Planeten umkreist werden oder nicht.

Seit Jahrzehnten ist bekannt, dass die Sonne im Vergleich mit sonnenähnlichen Sternen nur geringe Mengen des leichten chemischen Elements Lithium enthält – doch eine Erklärung für diese Anomalie fehlte. Die Entdeckung, dass geringer Lithiumgehalt charakteristisch für Sterne ist, die ein Planetensystem haben, legt nahe, worin des Rätsels Lösung besteht: “Damit ist die Erklärung für dieses 60 Jahre alte Rätsel recht einfach”, so Israelian: “Der Sonne fehlt das Lithium, weil sie Planeten besitzt.”

Diesen Schluss ziehen die Forscher aus der Analyse von 500 Sternen, von denen 70 von Planeten umkreist werden. Die meisten der Sterne wurden über mehrere Jahre mit dem High Accuracy Radial Velocity Planet Searcher (wörtlich der “Planetensucher für hochpräzise Radialgeschwindigkeitsmessungen”) überwacht. Dieser Spektrograf, besser bekannt unter dem Akronym HARPS, ist eines der am 3,6-Meter-Teleskop der ESO installierten Instrumente, und der weltweit erfolgreichste Planetenjäger. “Dies ist die beste bislang verfügbare Stichprobe um  zu verstehen, was Sterne, die ein Planetensystem besitzen, auszeichnet”, so die Aussage von Koautor Michel Mayor.

Die Astronomen betrachteten insbesondere sonnenähnliche Sterne, die ein Viertel der Stichprobe ausmachen. Sie fanden, dass die Mehrheit der Sterne, die von Planeten umkreist werden, weniger als ein Prozent des Lithiumgehalts der meisten anderen Sterne aufwiesen. “Genau wie unsere Sonne waren auch diese Sterne sehr effizient, als es darum ging, das Lithium, das sie bei ihrer Entstehung enthielten, zu zerstören” sagt Nuno Santos, ein weiteres Mitglied der Forschergruppe. “Mit Hilfe dieser einzigartigen großen Stichprobe konnten wir zeigen, dass das Fehlen von Lithium nicht mit irgendeiner anderen Eigenschaft der betreffenden Sterne – etwa ihrem Alter – zusammenhängt.

Lithium hat einen sehr leichten Atomkern, der aus nur drei Protonen und vier Neutronen besteht. Die meisten chemischen Elemente leichter als Eisen werden im Inneren von Sternen erzeugt. Die leichten Atomkerne Lithium, Beryllium und Bor entstehen dort allerdings nicht in nennenswerten Mengen. Was wir im Kosmos an Lithium finden ist den heutigen Modellen zufolge kurz nach dem Urknall entstanden, also vor rund 13,7 Milliarden Jahren. Die meisten Sterne haben daher einen sehr ähnlichen Lithiumgehalt – es sei denn, beachtliche Mengen dieses Elements sind bei Prozessen im Sterninneren zerstört worden.

Die neuen Ergebnisse zeigen eine Methode auf, wie Astronomen effektiver als bisher nach Planetensystemen suchen können: Anhand des Lithiumgehalts eines Sterns lässt sich entscheiden, ob sich aufwändigere Beobachtungen überhaupt lohnen.

Nun, da der Zusammenhang zwischen der Anwesenheit von Planeten und besonders geringem Lithiumgehalt bekannt ist, gilt es, die physikalischen Mechanismen aufzuklären, die dahinterstecken. “Es gibt verschiedene Weisen, wie ein Planet die Bewegung von Materie im Inneren seines Heimatsterns stören, so die Verteilung der verschiedenen chemischen Elemente beeinflussen und möglicherweise die Zerstörung von Lithium herbeiführen kann. Nun sind die Theoretiker gefragt, welche der Möglichkeiten am wahrscheinlichsten ist,” schließt Mayor.

Hintergrundinformationen

Die zugehörige Fachveröffentlichung, G. Israelian et al., “Enhanced lithium depletion in Sun-like stars with orbiting planets”, erscheint am 12. November 2009 in Nature.

Die beteiligten Astronomen sind Garik Israelian, Elisa Delgado Mena, Carolina Domínguez Cerdeña und Rafael Rebolo (Instituto de Astrofisíca de Canarias, La Laguna, Teneriffa), Nuno Santos und Sergio Sousa (Centro de Astrofisica, Universidade de Porto, Portugal), Michel Mayor und Stéphane Udry (Observatorium Genf) und Sofia Randich (INAF, Osservatorio di Arcetri, Florenz).

Die Europäische Südsternwarte ESO (European Southern Observatory) ist die führende europäische Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Getragen wird die Organisation durch ihre 14 Mitgliedsländer: Belgien, Dänemark, Deutschland, Finnland, Frankreich, Italien, die Niederlande, Österreich, Portugal, Spanien, Schweden, die Schweiz, die Tschechische Republik und das Vereinigte Königreich. Die ESO ermöglicht astronomische Spitzenforschung, indem sie leistungsfähige bodengebundene Teleskope entwirft, konstruiert und betreibt. Auch bei der Förderung internationaler Zusammenarbeit auf dem Gebiet der Astronomie spielt die Organisation eine maßgebliche Rolle. Die ESO betreibt drei weltweit einzigartige Beobachtungsstandorte in Nordchile: La Silla, Paranal und Chajnantor. Auf Paranal betreibt die ESO mit dem Very Large Telescope (VLT) das weltweit leistungsfähigste Observatorium für Beobachtungen im Bereich des sichtbaren Lichts. Die ESO ist der europäische Partner für den Aufbau des Antennenfelds ALMA, das größte astronomische Projekt überhaupt. Derzeit entwickelt die ESO das European Extremely Large Telescope (E-ELT) für Beobachtungen im Bereich des sichtbaren und Infrarotlichts, mit 42 Metern Spiegeldurchmesser ein Großteleskop der Extraklasse.

Die Übersetzungen von englischsprachigen ESO-Pressemitteilungen sind ein Service des ESO Science Outreach Network (ESON), eines internationalen Netzwerks für astronomische Öffentlichkeitsarbeit, in dem Wissenschaftler und Wissenschaftskommunikatoren aus allen ESO-Mitgliedsstaaten (und einigen weiteren Ländern) vertreten sind. Deutscher Knoten des Netzwerks ist das Haus der Astronomie am Max-Planck-Institut für Astronomie in Heidelberg.

Links

 

Englischer Originaltext:

Exoplanets Clue to Sun's Curious Chemistry

A ground-breaking census of 500 stars, 70 of which are known to host planets, has successfully linked the long-standing “lithium mystery” observed in the Sun to the presence of planetary systems. Using ESO’s successful HARPS spectrograph, a team of astronomers has found that Sun-like stars that host planets have destroyed their lithium much more efficiently than “planet-free” stars. This finding does not only shed light on the lack of lithium in our star, but also provides astronomers with a very efficient way of finding stars with planetary systems.

For almost 10 years we have tried to find out what distinguishes stars with planetary systems from their barren cousins,” says Garik Israelian, lead author of a paper appearing this week in the journal Nature. “We have now found that the amount of lithium in Sun-like stars depends on whether or not they have planets.

Low levels of this chemical element have been noticed for decades in the Sun, as compared to other solar-like stars, and astronomers have been unable to explain the anomaly. The discovery of a trend among planet-bearing stars provides a natural explanation to this long-standing mystery. “The explanation of this 60 year-long puzzle is for us rather simple,” adds Israelian. “The Sun lacks lithium because it has planets.”

This conclusion is based on the analysis of 500 stars, including 70 planet-hosting stars. Most of these stars were monitored for several years with ESO’s High Accuracy Radial Velocity Planet Searcher. This spectrograph, better known as HARPS, is attached to ESO's 3.6-metre telescope and is the world’s foremost exoplanet hunter. “This is the best possible sample available to date to understand what makes planet-bearing stars unique,” says co-author Michel Mayor.

The astronomers looked in particular at Sun-like stars, almost a quarter of the whole sample. They found that the majority of stars hosting planets possess less than 1% of the amount of lithium shown by most of the other stars. “Like our Sun, these stars have been very efficient at destroying the lithium they inherited at birth,” says team member Nuno Santos. “Using our unique, large sample, we can also prove that the reason for this lithium reduction is not related to any other property of the star, such as its age.”

Unlike most other elements lighter than iron, the light nuclei of lithium, beryllium and boron are not produced in significant amounts in stars. Instead, it is thought that lithium, composed of just three protons and four neutrons, was mainly produced just after the Big Bang, 13.7 billion years ago. Most stars will thus have the same amount of lithium, unless this element has been destroyed inside the star.

This result also provides the astronomers with a new, cost-effective way to search for planetary systems: by checking the amount of lithium present in a star astronomers can decide which stars are worthy of further significant observing efforts.

Now that a link between the presence of planets and curiously low levels of lithium has been established, the physical mechanism behind it has to be investigated. “There are several ways in which a planet can disturb the internal motions of matter in its host star, thereby rearrange the distribution of the various chemical elements and possibly cause the destruction of lithium. It is now up to the theoreticians to figure out which one is the most likely to happen,” concludes Mayor.

More Information

This research was presented in a paper that appears in the 12 November 2009 issue of Nature (Enhanced lithium depletion in Sun-like stars with orbiting planets, by G. Israelian et al.).

The team is composed of Garik Israelian, Elisa Delgado Mena, Carolina Domínguez Cerdeña, and Rafael Rebolo (Instituto de Astrofisíca de Canarias, La Laguna, Tenerife, Spain), Nuno Santos and Sergio Sousa (Centro de Astrofisica, Universidade de Porto, Portugal), Michel Mayor and Stéphane Udry (Observatoire de Genève, Switzerland), and Sofia Randich (INAF, Osservatorio di Arcetri, Firenze, Italy).

ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal

Die Entdeckung fremder Planeten boomt: Mit einem Schlag wurden 32 Exoplaneten gefunden.

Die Methode ist einfach: Mit hochauflösenden Spektrographen bestimmt man die durch umkreisende Planeten hervorgerufene Bewegung des Sternes an Hand der Verschiebung der Spektrallinien (Doppler-Effekt).

Frühere Nachrichten:

Erdähnlicher Planet entdeckt

Moleküle auf Exoplanet

Exoplanet fotografiert

 

Und nun der aktuelle  der Original Pressebericht der ESO vom 19.10.09:

VideoberichtHier Klicken!

32 New Exoplanets Found

Today, at an international ESO/CAUP exoplanet conference in Porto, the team who built the High Accuracy Radial Velocity Planet Searcher, better known as HARPS, the spectrograph for ESO's 3.6-metre telescope, reports on the incredible discovery of some 32 new exoplanets, cementing HARPS's position as the world’s foremost exoplanet hunter. This result also increases the number of known low-mass planets by an impressive 30%. Over the past five years HARPS has spotted more than 75 of the roughly 400 or so exoplanets now known.

"HARPS is a unique, extremely high precision instrument that is ideal for discovering alien worlds," says Stéphane Udry, who made the announcement. “We have now completed our initial five-year programme, which has succeeded well beyond our expectations.

The latest batch of exoplanets announced today comprises no less than 32 new discoveries. Including these new results, data from HARPS have led to the discovery of more than 75 exoplanets in 30 different planetary systems. In particular, thanks to its amazing precision, the search for small planets, those with a mass of a few times that of the Earth — known as super-Earths and Neptune-like planets — has been given a dramatic boost. HARPS has facilitated the discovery of 24 of the 28 planets known with masses below 20 Earth masses. As with the previously detected super-Earths, most of the new low-mass candidates reside in multi-planet systems, with up to five planets per system.

In 1999, ESO launched a call for opportunities to build a high resolution, extremely precise spectrograph for the ESO 3.6-metre telescope at La Silla, Chile. Michel Mayor, from the Geneva Observatory, led a consortium to build HARPS, which was installed in 2003 and was soon able to measure the back-and-forward motions of stars by detecting small changes in a star’s radial velocity — as small as 3.5 km/hour, a steady walking pace. Such a precision is crucial for the discovery of exoplanets and the radial velocity method, which detects small changes in the radial velocity of a star as it wobbles slightly under the gentle gravitational pull from an (unseen) exoplanet, has been most prolific method in the search for exoplanets.

In return for building the instrument, the HARPS consortium was granted 100 observing nights per year during a five-year period to carry out one of the most ambitious systematic searches for exoplanets so far implemented worldwide by repeatedly measuring the radial velocities of hundreds of stars that may harbour planetary systems.

The programme soon proved very successful. Using HARPS, Mayor’s team discovered — among others — in 2004, the first super-Earth (around µ Ara; ESO 22/04); in 2006, the trio of Neptunes around HD 69830 (ESO 18/06); in 2007, Gliese 581d, the first super Earth in the habitable zone of a small star (ESO 22/07); and in 2009, the lightest exoplanet so far detected around a normal star, Gliese 581e (ESO 15/09). More recently, they found a potentially lava-covered world, with density similar to that of the Earth’s (ESO 33/09).

 “These observations have given astronomers a great insight into the diversity of planetary systems and help us understand how they can form,” says team member Nuno Santos.

The HARPS consortium was very careful in their selection of targets, with several sub-programmes aimed at looking for planets around solar-like stars, low-mass dwarf stars, or stars with a lower metal content than the Sun. The number of exoplanets known around low-mass stars — so-called M dwarfs — has also dramatically increased, including a handful of super Earths and a few giant planets challenging planetary formation theory.

By targeting M dwarfs and harnessing the precision of HARPS we have been able to search for exoplanets in the mass and temperature regime of super-Earths, some even close to or inside the habitable zone around the star,” says co-author Xavier Bonfils.

The team found three candidate exoplanets around stars that are metal-deficient. Such stars are thought to be less favourable for the formation of planets, which form in the metal-rich disc around the young star. However, planets up to several Jupiter masses have been found orbiting metal-deficient stars, setting an important constraint for planet formation models.

Although the first phase of the observing programme is now officially concluded, the team will pursue their effort with two ESO Large Programmes looking for super-Earths around solar-type stars and M dwarfs and some new announcements are already foreseen in the coming months, based on the last five years of measurements. There is no doubt that HARPS will continue to lead the field of exoplanet discoveries, especially pushing towards the detection of Earth-type planets.

More Information

This discovery was announced today at the ESO/CAUP conference “Towards Other Earths: perspectives and limitations in the ELT era", taking place in Porto, Portugal, on 19–23 October 2009. This conference discusses the new generation of instruments and telescopes that is now being conceived and built by different teams around the world to allow the discovery of other Earths, especially for the European Extremely Large Telescope (E-ELT). The new planets are simultaneously presented by Michel Mayor at the international symposium “Heirs of Galileo: Frontiers of Astronomy” in Madrid, Spain.

This research was presented in a series of eight papers submitted — or soon to be submitted — to the Astronomy and Astrophysics journal.

The team is composed of

  • Geneva Observatory: M. Mayor, S. Udry, D. Queloz, F. Pepe, C. Lovis, D. Ségransan, X. Bonfils
  • LAOG Grenoble: X. Delfosse, T. Forveille, X. Bonfils, C. Perrier
  • CAUP Porto: N.C. Santos
  • ESO: G. Lo Curto, D. Naef
  • University of Bern: W. Benz, C. Mordasini
  • IAP Paris: F. Bouchy, G. Hébrard
  • LAM Marseille: C. Moutou
  • Service d’aéronomie, Paris: J.-L. Bertaux

ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

Links

Contacts

Stéphane Udry
Geneva University, Switzerland
Phone: +41 22 379 2467
E-mail: stephane.udry (at) unige.ch

Xavier Bonfils
Université Joseph Fourier - Grenoble 1 / CNRS,  
Laboratoire d'Astrophysique de Grenoble (LAOG), France
Phone : +33 47 65 14 215
E-mail: xavier.bonfils (at) obs.ujf-grenoble.fr

Nuno Santos
Centro de Astrofisica da Universidade do Porto, 
Portugal

Struktur liegt 6,7 Mrd. jahre in der Vergangenheit

Vielleicht ausgehend von Zufallsschwankungen der Energie beim Urknall hat sich ein ksomisches Netzwerk aus Dunkler Materie entwickelt, längs dem sich schon 380000 Jahre nach dem Urknall normale Materie verdichtet hat (Bild 1).

Daraus ist das heute vorhandene kosmische Netz aus Dunkler Materie geworden (Bild 2,3).

Die Verteilung naher Galaxien spiegelt dies wieder (aktuelles Bild 4). Jetzt ist es gelungen eine solche Struktur in einer Entfernung von 6,7 Mrd. Lichtjahren zu finden (Bild 5, 6).

Hier ist der originale Pressetext der europäischen Südsternwarte:

03 November 2009
Shedding Light on the Cosmic Skeleton

Astronomers have tracked down a gigantic, previously unknown assembly of galaxies located almost seven billion light-years away from us. The discovery, made possible by combining two of the most powerful ground-based telescopes in the world, is the first observation of such a prominent galaxy structure in the distant Universe, providing further insight into the cosmic web and how it formed.

Matter is not distributed uniformly in the Universe,” says Masayuki Tanaka from ESO, who led the new study. “In our cosmic vicinity, stars form in galaxies and galaxies usually form groups and clusters of galaxies. The most widely accepted cosmological theories predict that matter also clumps on a larger scale in the so-called ‘cosmic web’, in which galaxies, embedded in filaments stretching between voids, create a gigantic wispy structure.

These filaments are millions of light years long and constitute the skeleton of the Universe: galaxies gather around them, and immense galaxy clusters form at their intersections, lurking like giant spiders waiting for more matter to digest. Scientists are struggling to determine how they swirl into existence. Although massive filamentary structures have been often observed at relatively small distances from us, solid proof of their existence in the more distant Universe has been lacking until now.

The team led by Tanaka discovered a large structure around a distant cluster of galaxies in images they obtained earlier. They have now used two major ground-based telescopes to study this structure in greater detail, measuring the distances from Earth of over 150 galaxies, and, hence, obtaining a three-dimensional view of the structure. The spectroscopic observations were performed using the VIMOS instrument on ESO’s Very Large Telescope and FOCAS on the Subaru Telescope, operated by the National Astronomical Observatory of Japan.

Thanks to these and other observations, the astronomers were able to make a real demographic study of this structure, and have identified several groups of galaxies surrounding the main galaxy cluster. They could distinguish tens of such clumps, each typically ten times as massive as our own Milky Way galaxy — and some as much as a thousand times more massive — while they estimate that the mass of the cluster amounts to at least ten thousand times the mass of the Milky Way. Some of the clumps are feeling the fatal gravitational pull of the cluster, and will eventually fall into it.

This is the first time that we have observed such a rich and prominent structure in the distant Universe,” says Tanaka. “We can now move from demography to sociology and study how the properties of galaxies depend on their environment, at a time when the Universe was only two thirds of its present age.

The filament is located about 6.7 billion light-years away from us and extends over at least 60 million light-years. The newly uncovered structure does probably extend further, beyond the field probed by the team, and hence future observations have already been planned to obtain a definite measure of its size.

More Information

This research was presented in a paper published as a letter in the Astronomy & Astrophysics Journal: The spectroscopically confirmed huge cosmic structure at z = 0.55, by Tanaka et al. 

The team is composed of Masayuki Tanaka (ESO), Alexis Finoguenov (Max-Planck-Institute for Extraterrestrial Physics, Garching, Germany and University of Maryland, Baltimore, USA), Tadayuki Kodama (National Astronomical Observatory of Japan, Tokyo, Japan), Yusei Koyama (Department of Astronomy, University of Tokyo, Japan), Ben Maughan (H.H. Wills Physics Laboratory, University of Bristol, UK) and Fumiaki Nakata (Subaru Telescope, National Astronomical Observatory of Japan).

ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

Links

Contact

Masayuki TanakaDichteverteilung im Urknallgas

 

 

 

 

 

 

 

 

 

Simulation des Netzwerkes aus Dunkler Materie

 

 

 

 

 

 

 

 

 

 

 

 

Simulation des kosmischen Netzes aus Dunkler Materie

 

 

 

 

 

 

 

 

 

 

 

 

Verteilung nahe Galaxien am Himmel

 

 

 

 

 

 

 

 

 

Galaxiennetzwerk

 

 

 

 

 

 

 

 

 

 

 

Galaxiennetzwerk 2

Zwei Teams haben mit dem ESO Very Large Telescope hochaufgelöste Bilder des Überriesen im Sternbild Orion aufgenommen.

Sie haben dabei sowohl mit adaptiver Optik gearbeitet (zum Ausgleich der störenden Luftunruhe) aber auch mit Interferometrie (zur Erhöhung der Auflösung).

Beteigeuze ist 1000 mal größer als unsere Sonne und trotz ihres astronomisch jungen Alters von ein paar Millionen Jahren schon am Ende ihres Lebens angekommen (je massereicher ein Stern ist, desto schneller entwickelt er sich und desto kürzer ist seine Lebenserwartung): Sie wird vermutlich innerhalb der nächsten 1000 Jahre als Supernova explodieren.

Die Forscher haben eine Gasfahne entdeckt, die von der Oberfläche ausgeht und sechsmal größer als dieser Überriesenstern ist. Das zeigt, dass Beteigeuze unsymmetrisch ihre Masse reduziert, bevor sie explodieren wird. Vermutlich gibt es riesige blubbernde Gasströmungen im Stern selbst, die zur Abstoßung dieser gewaltigen Gasfahne beitragen. Jedenfalls zeigen Untersuchungen gewaltige Auf- und Abwärtsbewegungen der Oberflächengase des Sternes.

Weitere Infos: http://www.eso.org/public/outreach/press-rel/pr-2009/pr-27-09.html

Hier eine künstlerische Darstellung:

Künstlerische Darstellung

 

Quelle: ESO Pressemitteilung 27/09